skip to main content


Search for: All records

Creators/Authors contains: "Forte, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. On-chip assets, such as cryptographic keys, intermediate cipher computations, obfuscation keys, and hardware security primitive outputs, are usually stored in volatile memories, e.g., registers and SRAMs. Such volatile memories could be read out using active physical attacks, such laser-assisted side-channels. One way to protect assets stored in volatile memories can be the employment of sensors that detect active physical attacks and trigger complete zeroization of sensitive data. However, hundreds or thousands of clock cycles are often needed to accomplish this. Further, the sensing and self-destruction mechanisms are decoupled from the sensitive circuitry and can be disabled separately by an adversary. Moreover, defensive actions (e.g., zeroization) may be disabled by bringing the CPU/SoC into an inoperable condition, while registers may still hold their data, making them susceptible. This paper proposes a self-destructive latch to protect sensitive data from active side-channel attacks, which require supply voltage manipulations.Our proposed latch senses supply voltage interference required during such attacks, and reacts instantaneously by entering a forbidden data state, erasing its stored data. The design uses a NULL convention logic (NCL)- based polymorphic NOR/NAND gate, which changes its functionality with supply voltage. Our results show that the latch is stable across temperature and process variation reacting to attacks with 91% confidence. Even for the 9% where data is not destroyed, in 3.33% of cases data flips its state which makes reliable extraction difficult for an attacker. The polymorphic latch is straightforward to implement due to its NCL implementation and the voltage for the self-destructive behavior is easily altered by resizing only two transistors. Further, this self-destructive behavior extends to registers which are built out of latches. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Outsourcing semiconductor device fabrication can result in malicious insertions and overbuilding of integrated circuits (ICs) by untrusted foundries without the IP owner’s knowledge. Active hardware metering methods attempt to combat IC piracy by requiring fabs to perform an activation protocol with the IP owner for each chip created. In this paper, we have taken a closer look at the IC metering through bus scrambling protocol mentioned in Maes et al., 2009 and we investigate alternatives which employ 1-out of 2 oblivious transfer (OT). Our focus is on Bellare Micali OT and Naor Pinkas OT, which, under certain assumptions, guarantee protection against malicious adversaries. Using OT as an alternative helps with the need to protect the integrity of the private input generated by the chip. Thus, the security of the protocol reduces to the Decisional Diffie Hellman sense. Finally, we discuss possible attacks and show how the proposed protocols could prevent them. 
    more » « less
  3. null (Ed.)